

The contribution of long-range transport and secondary organic aerosol to $PM_{2.5}$ in Pittsburgh

Juan C. Cabada-Amaya, Spyros N. Pandis, Allen L. Robinson, Ramachandran Subramanian, Wei Tang, Natalie J. Anderson, Timothy Raymond, Cliff I. Davidson

Outline

- Motivation and Definitions.
- Sampling methods of Carbonaceous material at PAQS.
- Carbonaceous material composition for July 2001.
- Carbonaceous material composition from July 2001 to February 2002.

PM_{2.5} composition PAQS.

 NH_4 10% SO_4 Crustal 6% 30% **EC 4%** NO_3 10% OC 40%

July 2001, $20 \,\mu g/m^3$

December 2001, $10 \mu g/m^3$

18

OC/EC Sources

Secondary Organic Aerosol Production in region

Biogenic Aerosol

Primary OC and EC Emissions in region

Power Plants

Automobiles

Diesel Trucks

Wood Burning

Factories

PAQS Central sampling site

OC and EC Sampler Configurations (PAQS)

OC and EC Measurements (PAQS, July 2001)

Average OC and EC concentrations (PAQS, July 2001)

Questions?

- Where is carbonaceous material coming from?
 - Regional or Local?
- What fraction of the measured organic carbon is primary and secondary?

Sampling Sites

Regional Contribution of OC and EC to Pittsburgh

 Around 80% of carbonaceous material in Pittsburgh during July 2001 was due to long transport processes

Primary vs. Secondary OC

• EC can be used as tracer for primary OC.

$$OC|_{secondary} = OC|_{total} - EC|_{total} * OC/EC|_{emitted}$$

- Ambient Samples $(OC|_{total})$ and $EC|_{total}$
- Determine ratio of OC/EC primary emissions.
 (OC/EC | emitted)

OC and EC high resolution measurements, July 2001

Undenuded Sampler (4-6 hrs samples)

Denuded In-situ Analyzer (2-4 hrs samples)

Ozone as indicator of Photochemical activity

OC/EC Ratio from measurements, July 2001

Undenuded Sampler (4-6 hrs samples)

Primary OC/EC Ratios from high resolution measurements, July 2001

Measurement (2-6 hrs)	OC/EC pri	Non- combustion primary OC
Undenuded (front quartz)	2.5	0.8
Undenuded (front quartz –teflon quartz correction)	1.0	0.4
Undenuded (front quartz - backup quartz correction)	2.5	0.1
Denuded In-situ analyzer	1.8	0.4

Based on NIOSH method measurements

CARNEGIE MELLON UNIVERSITY

Daily Averaged OC Composition, July 2001

Undenuded Sampler (4-6 hrs samples)

OC Composition, high resolution measurements, July 2001

EC (μ g/m³)

OC and EC Daily

OC/EC Ratio from

EC (μ g/m³)

Undenuded Sampler (24 hrs averages)

Daily OC Composition, July 2001

Undenuded Sampler (24 hrs averages)

% secondary OC

OC and EC measurements (front Quartz) Monthly Averages (2001-2002)

OC and EC measurements (front Quartz) Monthly Averages (2001-2002)

OC Composition (front Quartz), Monthly Averages (2001-2002)

Conclusions

- More than 80% of carbonaceous material in Pittsburgh is caused by long range transport.
- 20% to 50% of OC concentration could be secondary in origin.
- Different approaches for OC/EC ratio measurement give relatively consistent results.
- Higher sampling frequency gives higher estimates of SOA. (Ability to identify periods of primary and secondary OC)

Acknowledgements

• DOE/NETL and EPA Supersites Program for Supporting this work.